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This article describes basic types of products of multiple unit vectors and vectors and
gives simple examples of these. A case of the product of three vectors is used to illustrate
the relationships between different types of multi–products, as well as between their
vector and scalar products.
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1. Introduction

Whenever a product of vectors is referred to in the literature, most frequently a
product of two vectors is meant: a scalar one ab, or a vector one a× b. For three
vectors a mixed product (a,b, c) = (a×b)c and a double vector product (a×b)×c
are also defined. In addition, for four vectors a triple vector product in the form
(a× b)× (c× d) has been defined.

Thus, a question arises: what will result from the multiplication of several, three
or more vectors and what will the result of such an operation be if we follow the
rules of scalar multiplication of two vectors a b?

The following two situations can be the starting point for considerations on the
multiplication of vectors:

• when the vectors lie in an n–dimensional space, determined by the system of
axes and then they are described in this system of axes by coordinates. We
will deal with this case later.

• when, at least, at the beginning we disregard the system of coordinates, while
we relate the axes occurring in the problem only to the vectors.
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2. Multiplication of unit vectors of axes. Types of products

If the axes occurring in a problem are related only to vectors, then with any vector
v, lying in the space on any line of operation, an axis v, coinciding with this vector
is related. The axis v is determined by a positive unit vector, a unit vector of this
axis ev lying on it. Since the axis unit vector is defined as

ev = v/v

hence the vector v can be written as

v = v ev (1)

Let us imagine another axis t lying in the same space, with the unit vector of
this axis et lying on it. Let us assume that both axes, v and t, form between them
a known angle ϕvt.

Let us now see an obvious relationship between the unit vector ev, lying on the
axis v, and the unit vector et lying on the other axis t. Here we make use of a
well-know definition of a scalar product of two vectors, or two unit vectors, in the
form:

ev et = cos ϕvt

We multiply both sides of equation (1) by the unit vector et and we get:

v et = v evet = v cos ϕvt (2)

Let us now try to multiply again both sides of equation (2) by the unit vector
of the axis et.

v etet = v evetet = v(evet)et = v cos ϕvtet = vt (3)

Then on the right side of equation (3) we obtain a vector vt , which is a projection
of the vector v on the axis t. Equation (3) is the result of double multiplication
of equation (1) by the unit vector et. As a result, after these operations we have
obtained a new vector, lying on a different direction (line of operation), on the axis
t.

A doubt arises whether such reasoning is correct. Let us notice that we have
multiplied equation (1) by et twice, thus, in fact, we have multiplied equation (1) by
one. It is known that the square of the same unit vector is equal to one (etet = 1),
it is also known that if we multiply both sides of any equation times one, it remains
unchanged.

Hence, we can question the correctness of the reasoning while making operations
in transformations (2–3) and claim that equation (3) should assume the form,

v etet = v ev(etet) = v ev = v (4)

In reality, this problem amounts to the question what the product of the unit
vector of one axis times the square of the unit vector of another axis is; in other
words, it boils down to the question about the value of the expression evetet. As



Multi–Products of Unit Vectors ... 105

we have demonstrated above, the result of such multiplication depends on the order
in which the unit vectors are multiplied. Performing this operation, we have two
options of choosing the order of multiplication.

• We can first multiply the homogeneous unit vectors, which means that

ev etet = ev(etet) = ev since etet = 1 (5)

This would be the first kind of product of three unit vectors, which can be denoted
as f3. This kind of product will be referred to by a person who thinks that equation
(1) should be left unchanged, i.e. should be transformed into equation (4).

• Or we can first multiply heterogeneous unit vectors, i.e. assume that

evetet = (evet)et = cos ϕvtet (6)

This is the second kind of product of three unit vectors, which will be denoted as
s3.

Such a kind of product occurs in the example given above during transformation
of equation (1) into equation (3).

3. Scalar related to an axis. Product of scalar times vector

Such reasoning makes us realise that if any scalar c is presented as a product of a
number c times the square of the unit vector of any axis t, i.e. as an expression

c = c1 = c etet (7)

then the scalar c thus defined can be called a scalar related to an axis t.
A scalar related to an axis always has the same value, independent of the axis

chosen, hence it satisfied the condition given in the definition of a scalar.
If we multiply a scalar related to an axis c by the vector v = v ev, we will obtain

the following definition of a product of a vector and scalar related to an axis.

cv = c v ev = c v evetet =
{

c v ev if f3

c v cosϕvtet if s3 (8)

According to this formula, the product of a scalar c times the vector v is a new
vector:

• which lies on the same axis v of a length equal to the product of cv – if we
assume the first kind of odd product of three unit vectors f3,

• which may lie on any axis of a length equal to the product of c v and the scalar
product of unit vectors of both axes v and t – if we assume the second kind
of product s3. It can then be said that in this case we obtain a vector of a
projection of the vector v on any axis t.

It should be noted that if we calculate the product of c v for the axis t coinciding
with the axis v, then the value of the products for both cases f3 and s3 is the same
and amounts to c v ev.

Let us also notice that if the axes t and v are perpendicular, the product of the
second kind (if s3) is equal to zero.
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4. Product of a vector equation times a unit vector. Even and odd
products

Let us now deal with the question whether we can multiply both sides of any vector
equation by a unit vector or any power of this unit vector. Let us assume the
simplest equation of the sum of two vectors

a = b + c

in the form
a ea = b eb + c ec (9)

and multiply both sides of it by et or e3
t , or times the unit vector et raised to a

higher but odd power. In each of these cases we have to do with a product of an
even number of unit vectors, f2 and s2 or f4 and s4, etc.

Such a kind of product can be called an even product of several unit vectors. A
scalar or a scalar equation is the result of an even product.

And so, for example, after the multiplication of both sides of equation (9) times
e3

t we get
a eae3

t = b ebe3
t + c ece3

t (10)

No matter which kind of product we assume, the first or the second, thus f4 = s4,
we will get the same scalar equation of the form

a cos ϕat = b cos ϕbt + c cosϕct (11)

This equation is true and confirms the well–known theorem of Chasles that the
coordinate of the resultant vector on any axis is equal to the algebraic sum of the
coordinates of the component vectors on the same axis.

Let us now multiply both sides of equation (9) by e2
t or e4

t , or times the unit
vector et raised to a higher but even power. Then we have to do with a product of
an odd number of unit vectors, f3 and s3 or f5 and s5, etc.

Such a kind of product can be called an odd product of several. A vector or
vector equation is the result of an odd product.

And so, for example, after the multiplication of equation (9) times e4
t , we get

a eae4
t = b ebe4

t + c ece4
t (12)

If we calculate the first kind of product , i.e. f5, equation (12) will return to its
initial form (9).

If we now calculate the second kind of product , i.e. s5, we will get an equation
of the form

a cosϕatet = b cosϕbtet + c cos ϕctet (13)

which is a projection of equation (9) onto the axis t. This equation is also true.
The reasoning cited above leads to the conclusion that both sides of any equation

of the vector sum can be multiplied by any unit vector of an axis or vector raised
to any power and, as a result, we will obtain a vector or scalar equation which is
always true. The kind of the equation obtained depends on two different features
of the product obtained:
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• evenness or oddness

• the priority chosen for the multiplication of unit vectors of an axis.

5. Product of three vectors

5.1. Classical notation

Let us now deal with a product of three vectors ab c, lying on any three axes in
the space, described as

a = a ea, b = b eb, c = c ec

The product of the vectors ab c also depends on the order of their multiplication.
By multiplying these vectors in different orders, we obtain three different resultant
vectors, of different lengths and lying on different directions – a, b or c.

abc = a b c eaebec =





a b c cos ϕbcea = (bc)a
a b c cos ϕaceb = (c a)b
a b c cos ϕabec = (ab)c

(14)

where
(bc)a 6= (ca)b 6= (ab)c

The vector sum of the right sides of products (14) is a constant value for the
product of the three vectors abc, regardless of the order of their multiplication.
This vector in form (15) will be denoted as p3 and called a vector of the function
of the sum of products of three vectors.

p3 = (bc)a + (c a)b + (ab)c (15)

The product of the same vectors abc in an n–dimensional Cartesian space is
different. To start with, let us assume that the space is three–dimensional, described
by an orthogonal system of axes Ox y z, and that the vectors ab c determined by
the coordinates given below are lying in this space

a(ax, ay, az), b(bx, by, bz), c(cx, cy, cz)

Then

a = axex + ayey + azez

b = bxex + byey + bzez (16)
c = cxex + cyey + czez

Thus, the product of three vectors can be written as

abc = (axex + ayey + azez)(bxex + byey + bzez)(cxex + cyey + czez) (17)

After multiplication of the right side of (17) and taking into consideration that
e3

x = ex and that

e2
xey = ey if f3
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e2
xey = 0 if s3

we isolate in it the first (f3) and the second (s3) kind of product in the form of the
following vectors

f3 = [axbxcx + (bycy + bzcz)ax + (aycy + azcz)bx + (ayby + azbz)cx]ex

+ [aybycy + (bxcx + bzcz)ay + (axcx + azcz)by + (axbx + azbz)cy]ey (18)
+ [azbzcz + (bxcx + bycy)az + (axcx + aycy)bz + (axbx + ayby)cz]ez

s3 = axbxcxex + aybycyey + azbzczez (19)

The vector s3 has coordinates equal to products of homogeneous components and
is the result of multiplication of the vectors on the system axes. Thus, it can be
called an axis product of three vectors.

After multiplying both sides of equation (19) by 2 and adding equation (18) and
(19), on the right side of the sum obtained we get an expression in which scalar
products of the vectors a, b and c appear

f3 + 2s3 = (axbx + ayby + azbz)(cxex + cyey + czez)
+ (axcx + aycy + azcz)(bxex + byey + bzez)
+ (bxcx + bycy + bzcz)(axex + ayey + azez)

f3 + 2s3 = (ab)c + (a c)b + (bc)a (20)

thus, after taking into account (15), we get

f3 + 2s3 = p3 (21)

If we analyse equations (18) and (19), we will see that the coordinates of the
vector s3 are contained within the coordinates of the vector f3. Thus, we can
subtract both sides of equation (19) from both sides of equation (18). We will then
get a new vector which is the difference of the vectors of the product of the first
and the second kind.

Let us call this vector a product of the third kind of three vectors and denote it
as t3

t3 = f3 − s3 (22)
t3 = [(bycy + bzcz)ax + (aycy + azcz)bx + (ayby + azbz)cx]ex

+ [(bxcx + bzcz)ay + (axcx + azcz)by + (axbx + azbz)cy]ey (23)
+ [(bxcx + bycy)az + (axcx + aycy)bz + (axbx + ayby)cz]ez

Hence,
t3 = (Ayzax + Byzbx + Cyzcx)ex

+ (Axzay + Bxzby + Cxzcy)ey (24)
+ (Axyaz + Bxybz + Cxycz)ez
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where

Axy = bxcx + bycy Bxy = axcx + aycy Cxy = axbx + ayby

Ayz = bycy + bzcz Byz = aycy + azcz Cyz = ayby + azbz (25)
Axz = bxcx + bzcz Bxz = axcx + azcz Cxz = axbx + azbz

The vector t3 can also be presented as a sum of vectors

t3 = (Ayzax + Axzay + Axyaz) + (Byzbx + Bxzby + Bxybz)
+ (Cyzcx + Cxzcy + Cxycz) (26)

The coefficients A,B, C are equal to the scalar products of vector projections
(b, c), (a, c), (a,b) onto the planes y z, x z, x y of the system, respectively.

Thus, the product t3 depends on the value of the scalar products calculated in
the planes of the coordinate system and therefore, we can call it a plane product.

Since
f3 = s3 + t3

equation (20) can now be written as

3 s3 + t3 = (ab)c + (a c)b + (bc)a (27)

so, after taking into account (15) we can write

3 s3 + t3 = p3 (28)

From the theory of vector products we know that

(a×c)× b = (ab)c− (bc)a
(a×b)× c = (a c)b− (bc)a

Thus, equations (20), (21), (27) and (28) can be presented as the following sum of
vector and scalar products

p3 = f3 + 2 s3 = 3 s3 + t3 = (a× b)× c + (a× c)× b + 3 (bc)a (29)

5.2. Matrix notation

It is often easier to use matrix notation. We can then write vectors ab c as matrices
aT [axayaz], bT [bxbybz], cT [cxcycz].

We introduce the tensor of the product of vectors a b in the form of matrix Pab

(and similarly Pbc and Pca).

Pab =




axbx axby axbz

aybx ayby aybz

azbx azby azbz


 (30)

In this case the product of tensor Pab and the matrix corresponding to vector c can
be written as:
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Pab c = (bc)a (31)

Substituting all three tensors into equation (15), the sum of the products p3

becomes the sum of the product of matrices:

p3 = Pab c + Pbc a + Pca b (32)

Therefore the right-hand sides of equations (19) and (20) can be replaced by the
right-hand side of equation (32).

6. Final remarks

Making use of simple examples of products of several vectors described in a three-
dimensional space, we have introduced basic notions ordering the description of a
general case of multi-products of vectors, such as

• an even and odd product,

• a product of the first kind and a product of the second kind (the axis one)
and of the third kind (the plane one)

• a function of the sum of products.

Taking three vectors as an example, relationships (20–21) and (27–29) occurring
between these quantities have been demonstrated.

In addition, a notion of a scalar related to an axis has been introduced.
It has also been proved that it is possible to multiply vector equations times any

power of the unit vector of any axis, the correctness of the equation being preserved.
This offers possibilities to solve a general case of an even product and an odd

product for any number of vectors in an n–dimensional space.
Nomenclature

fv first kind of product of even (v) vectors
fd first kind of product of odd (d) vectors
sv second kind of product of even vectors
sd second kind of product of odd vectors
tv third kind of product of even vectors
td third kind of product of odd vectors
pv function of the sum of even vectors
pd function of the sum of odd vectors
Pab tensor of the product of vectors ab


